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Biologically based markers (biomarkers) are cur-
rently used to provide information on exposure,
health effects, and individual susceptibility to chemi-
cal and radiological wastes. However, the develop-
ment and validation of biomarkers are expensive and
time consuming. To determine whether biomarker de-
velopment and use offer potential improvements to
risk models based on predictive relationships or as-
sumed values, we explore the use of uncertainty anal-
ysis applied to exposure models for dietary methyl
mercury intake. We compare exposure estimates
based on self-reported fish intake and measured fish
mercury concentrations with biomarker-based expo-
sure estimates (i.e., hair or blood mercury concentra-
tions) using a published data set covering 1 month of
exposure. Such a comparison of exposure model pre-
dictions allowed estimation of bias and random error
associated with each exposure model. From these
analyses, both bias and random error were found to be
important components of uncertainty regarding bi-
omarker-based exposure estimates, while the diary-
based exposure estimate was susceptible to bias. Ap-
plication of the proposed methods to a simple case
study demonstrates their utility in estimating the con-
tribution of population variability and measurement
error in specific applications of biomarkers to envi-
ronmental exposure and risk assessment. Such analy-
ses can guide risk analysts and managers in the appro-
priate validation, use, and interpretation of exposure
biomarker information. o 1998 Academic Press
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INTRODUCTION

Biologic measures (biomarkers) are developed to pro-
vide information regarding individual exposure, effect,
and/or susceptibility to a variety of environmental con-
taminants (Clarkson, 1987; Hattis, 1991; Albertini et
al., 1993; Cullen and Redlich, 1995; Grandjean, 1995;
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Links et al., 1995; Lowry, 1995; Rothman et al., 1995;
Srivastava and Rossi, 1996). These biomarkers have a
range of practical applications including evaluation of
toxicity mechanisms and end points, clinical medicine,
and industrial hygiene (Schulte and Perera, 1993).
When used in risk assessment, information from bi-
omarkers may replace default assumptions that are
made when specific information regarding exposure,
absorption, toxicokinetics, and toxicodynamics is un-
available (Table 1). However, quantitative evaluations
of the utility of biomarker information in risk assess-
ments are lacking. Such assessments may be valuable
for researchers and risk managers in determining
whether the costs of developing and validating a bi-
omarker are justified by the added information they
would provide.

To estimate dietary exposure to an environmental
agent, there are two common options: use of a predic-
tive model and use of a biomarker of exposure. Predic-
tive modeling usually entails examination of the major
potential routes of exposure, estimation of the duration
of exposure to members of a population, estimation of
the concentration of the agent in each medium that
contributes to exposure, estimation of absorbed frac-
tion, and other factors. Biomarkers offer the potential
for improving exposure information by allowing more
specific information on individual exposure or uptake
to be obtained. However, exposure estimates obtained
from biomarkers applied in field studies (a noncon-
trolled environment) are only as good as their accuracy
and precision. In a laboratory experiment or clinical
trial, where a known exposure can be calibrated
against the biomarker of exposure, the uncertainty
around the predictive model-based exposure estimate
and the biomarker-based exposure estimate can be
small and the estimates highly correlated, but this may
not be the case in the field where the two estimates
may deviate considerably. The central question then
becomes one of determining which of the exposure es-
timates used in uncontrolled situations (e.g., epidemi-
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TABLE 1

Use of Biomarkers to Refine Risk Assessment
Information

Variable Use of biomarkers

Exposure Establish exposure characteristics
‘Route of exposure
‘Peak exposure
-Total exposure
Estimate cumulative exposure
Establish absorption factors
Inhalation
‘Dermal exposure
-Ingestion
Identify factors that influence absorption
Identify interspecies differences
Identify sensitive population characteristics
Establish distribution Kinetics
Establish half-life in blood or body
Identify interspeceis differences
Identify factors that influence distribution,
metabolism, or excretion
Estimate cumulative exposure
Estimate peak exposure variables
Time
-Concentration
Identify sensitive population characteristics
Identify mechanism of toxicity at target organ
Establish target organ potency
Identify sensitive population characteristics
Identify factors that influence target organ
toxicity
Identify interspecies differences

Absorption

Toxicokinetics

Toxicodynamics

ologic studies) deviate least from what you would ex-
pect based on data obtained through controlled studies.
Using the proposed methods, we demonstrate the util-
ity of using combined uncertainty estimates, similar to
those used in regulatory risk assessment, for estimat-
ing and comparing the uncertainty provided by bi-
omarkers of exposure and standard predictive models
for dietary mercury estimation. While such analyses
can be generally applied to evaluate a broad range of
biomarkers of exposure, published data providing si-
multaneous information on dietary mercury exposure
using biomarkers of exposure, self-reported dietary in-
take, and measured dietary intake, make the applica-
tion to mercury an excellent case application.
Mercury is a potentially toxic contaminant prevalent
at many hazardous waste sites including DOE and
National Priority List (NPL) sites. Mercury is ranked
third behind lead and arsenic on the ATSDR/EPA pri-
ority list of hazardous substances (ATSDR, 1997)
based on toxicity and prevalence at contaminated sites.
In the environment, elemental mercury may undergo
oxidation to inorganic mercury (Hg) and biotransfor-
mation to methyl mercury (MeHg). MeHg is a natu-
rally occurring environmental compound that bioaccu-
mulates in fish and piscivorous species; MeHg
comprises greater than 95% of total mercury in edible

fish tissues (Bloom, 1992). High exposure to MeHg
during fetal development has been linked to adverse
human development including mental retardation and
altered motor function (Matsumoto et al., 1965; Choi et
al., 1978). Because of its relevance to public health,
biomarkers of MeHg exposure have been developed.
These biomarkers include the chemical analyses of
blood and hair for Hg, which have been shown to be
specific and sensitive measures of exposure following
prolonged MeHg exposure (Kershaw et al., 1980;
Phelps et al., 1980; Marsh, 1987; Lind et al., 1988).

Evaluating Uncertainty in Exposure Modeling

Uncertainty in exposure model variables comes from
many sources including instrument error, recall bias,
and population variability; these can be grouped as
systematic error (i.e., bias) and random error. The ef-
fects of these errors on exposure estimates can be ex-
pressed as

Xi =1t + e 1)

where x; represents the measured or estimated expo-
sure value for the i, subject, t; represents the true
exposure value for that subject, and e; represents the
measurement error for that subject (Armstrong et al.,
1992). Measurement bias is defined as the mean of the
measurement error distribution (ng). The random er-
ror is described by the variance of the measurement
error (o2). “Precision” is used to describe the magni-
tude of random error, but is inversely related, so that a
highly precise measurement is one with low error vari-
ance. “Accuracy” refers to both precision and bias, with
high accuracy implying high precision and low bias.

Where x; and t; are known for all i subjects, bias and
random error can easily be assessed. However, t; is
seldom (if ever) actually known for any individual be-
cause only x; is observed. Importantly, the individual
values x;, t;, and e; can be considered as observations of
random variables X, T, and E, respectively. Although
T and E are assumed to be independent, X is depen-
dent on both T and E. These distinctions can be im-
portant if Monte Carlo simulation is used to simulate
missing values. For example, exposure modeling using
two-dimensional Monte Carlo simulation requires the
estimation of the distribution of population variability
T (Cohen et al., 1996; Frey and Rhodes, 1996), whereas
typically only a set of measured values x; and a rough
estimate of the distribution of measurement error (E)
are normally available.

True differences in characteristics among members
make up population variability T, and the variance of
T(0%) cannot be reduced by further or improved mea-
surement (Morgan and Henrion, 1990). Measurement
error, E, represents the residual error that cannot be
explained by population variability. Unlike ¢%, the
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variance of measurement error (o2) can be reduced by
refinements in measurement and improved character-
ization of the variable of interest (e.g., improved char-
acterization of the distributional form or improved
characterization of the tails of the distribution). Bias
exists when the mean of the measured exposures is
different than the mean of the true exposures and is
the difference between the true population mean (u)
and the mean of the measured values (uy; Armstrong
et al., 1992). When inferences are made regarding the
exposures of the broader population from which the
study individuals were sampled, measurement error
only accounts for one component of the potentially re-
ducible uncertainty; we use reducible uncertainty
when referring to this form of uncertainty. In this
paper, we examine the effects of measurement error on
estimates of T, but do not attempt to quantify the total
reducible uncertainty associated with using T in infer-
ences about broader population exposure.

In an approach proposed by Frey and Rhodes (1996),
the mean and variance of the true population variabil-
ity T are estimated as

MT = Kx = ME (2)
o2 = 0% — oL 3)

Note that if the measurements are unbiased (ug =
0), then u+ = py. While Egs. (2) and (3) can be used to
estimate the mean and variance of T, the distribu-
tional form of T depends on the specific characteristics
of the distributions of X and E. One known outcome is
that the distribution of T is approximately normal if
the distributions of X and E are approximately normal.
Similarly, if the error structure is multiplicative in-
stead of additive, the distribution of T is approximately
lognormal when the distributions of X and E are ap-
proximately lognormal. Where the normal assumption
does not hold, Monte Carlo simulation of the distribu-
tion of true population variability T can be conducted.
This requires the simulation of individual values of ¢;
conditional on Xx;. Available techniques for simulating
such random draws generally require the correlation of
the population variability X with the measurement
error E.

To demonstrate the use of uncertainty analysis ap-
plied to exposure modeling, we compare exposure esti-
mates derived from self-reported, diary-based fish in-
take estimates and fish mercury content (i.e., the
predictive exposure model) against exposure estimates
from hair or blood mercury concentration (i.e., the bi-
omarker-based exposure models), and we examine the
factors that contribute to uncertainty about these esti-
mates of dietary mercury intake. In these analyses, we
use mercury intake estimates based on simultaneously
obtained duplicate diet measurements as our reference

for assessing bias and error associated with biomarker-
based or predictive model-based exposure estimates.

METHODS

To compare exposure estimates using a predictive
model of exposure with blood and hair mercury analy-
ses as biomarkers of exposure, we evaluate four expo-
sure models, two of which are predictive models and
two of which are based on biomarkers of exposure.
Standard exposure equations (U.S. EPA, 1989) using
fish mercury content estimates and either duplicate
diet fish intake measurements (Exposure,) or self-re-
ported fish consumption rates (Exposure,) are used as
predictive exposure models. The biomarker-based ex-
posure models are based on either hair Hg analysis
(Exposurey) or blood Hg analysis (Exposure,). The four
exposure models are

Exposurel (mg/day) = [MeHg]Fish : I:iSht:iupIicate; (4)
Exposure, (mg/day) = [MeHg]ish - Fishgiary; (5)

Exposure; (mg/day) = [Hg]Hair * Faiood:tair * Fintake:Blood: (6)

and

Exposure4 (mg/day) = [Hg]Blood * Fintake:Bloods (7)

where the factor F | iake-B100q 1S the steady-state ratio of
dietary MeHg intake to Hg level in blood, and Fgquq:
Hair IS the steady-state ratio of Hg levels in blood and
hair. We refer to these two steady-state factors as “F
ratios.” Non-fish-related MeHg exposures are assumed
to be negligible in the derivation of Exposure; and
Exposure,. To calculate absorbed dose, each exposure
equation above would be multiplied by a gastrointesti-
nal absorption fraction.

To evaluate the differences in the MeHg exposure
estimates obtained by using biomarkers of exposure
relative to predictive models, data on intake, hair Hg,
and blood Hg in the same population were compiled.
We used reported mercury levels in hair, blood, and
diet from a study of 98 individuals with long-term,
stable consumption of fish (i.e., assumed steady-state
conditions; Sherlock et al., 1982).

Lognormal probability distributions were fit to indi-
vidual exposure data taken from Sherlock et al. (1982)
for I:iShdiary! I:iShduplicate! [Hg]Hair' and [Hg]BIood' While
Sherlock et al. (1982) did not report individual [MeH-
Olgisn Values, the [MeHg]g;s, distribution parameters
were estimated by dividing the distribution of Expo-
sure;, which was fit to data provided as a graph in
Sherlock et al. (1982), by the distribution of measured
fish intake (Fishgypiicate), Which was also fit to graphed
data.
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FIG. 1. (a) Lognormal distribution fit to Fg;goq.1air ratio in Sher-
lock et al. (1982) data. (b) Lognormal distribution fit to F,cake:Hair
ratio in Sherlock et al. (1982) data.

Distribution parameters for Fg;ooq-mair @8N0 Fintake-Blood
were derived using data presented as Tables 6 and 7 in
WHO (1990) and data presented in Sherlock et al. (1982).
Fintake:Blood @Nd Fgloog-Hair Were assumed to be lognor-
mally distributed (Figs. 1a and 1b) and reported regres-
sion slopes (WHO, 1990) were used to estimate the
means and variances, using weights based on sample
sizes. Because the reported regression slopes did not gen-
erally include variances, the variance of each F ratio in
the Sherlock et al. data was used as a common estimate
of variance among all studies. The intent of this proce-
dure was to develop broad-based, general estimates of the
observed mean and variance of each F ratio to reflect the
full range of observed values and to allow exposure mod-
eling in study populations without prior knowledge of
population-specific F-ratio values. Resulting distribution
parameters for these and all other model variables are
shown in Table 2.

Uncertainty propagation was conducted analytically
with the assumption that all inputs within each expo-
sure model are independent lognormally distributed

variables. Use of the lognormal distribution is appro-
priate for variables confined to positive values and is
widely familiar to scientists and regulators (Finkel and
Evans, 1987). The selection of lognormal probability
distributions for model variables allows analytical un-
certainty propagation after multiplicative equations
are log-transformed (Morgan and Henrion, 1990). Log-
normal transformation of each multiplicative equation
results in a series of additive terms, such as

In Exposure3 =1In [Hg]BIood + In I:Intake:BIood- (8)

The mean and variance for the left side of the equa-
tion are equal to the sum of the means and sum of the
variances, respectively, of the variables in the right
side (Fisher and Van Belle, 1993).

Using the conceptualization described by Eq. (1),
alternative exposure measurements for any one sub-
ject can be viewed as various estimates of x;. Differ-
ences in exposure predictions among the biomarker-
based exposure distributions (i.e., Exposure; and
Exposure,) and the dietary model-based exposure dis-
tributions (Exposure,; and Exposure,) can be charac-
terized by differences in the measured means to indi-
cate relative biases (Aug) between exposure estimates
and by differences in the measured variances to indi-
cate the relative magnitude of their random errors
(Ac2). Because o= is defined by the true underlying
frequency distribution, which is assumed to be the
same for all four exposure models when applied to the
same population, the difference in measured variances
across models is equal to AoZ. If one of the models is
believed to be an unbiased (but not necessarily precise)
representation of T, so that u+ = uy, then the absolute
bias can be calculated for each of the other models.
Similarly, if one of the models is believed to be a precise
(but not necessarily unbiased) representation of T,
such that o = 0, then the absolute variance of the
measurement error is known for all other models. In
fact, because the model which minimizes o% will also
minimize o2, simple inspection for the model with the
lowest value of 0% will indicate the most precise model
if the observed variation in each model is truly a result
of independent random error affecting a common un-
derlying MeHg exposure rate.

Relative bias and random error can be estimated
between models using the results of the four exposure
models [Eqgs. (4)—(7)] as independent “measurements”
of x;. However, while relative bias and error provide
valuable information regarding the differences be-
tween the accuracy of different exposure predictions,
they do not allow determination of which of the expo-
sure models are “better” in isolation from a standard. If
the model assumptions are believed to be valid and an
exposure estimate with de minimus bias and random
error is available, then the bias and random error of
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TABLE 2

Lognormal Probability Distributions for Variables
Used in Propagating Uncertainty in Estimating Di-
etary MeHg Exposure

Variable Units In mean In SD
Fishpiar® kg/day —2.89 0.697
Fishoupiicate™ kg/day -3.19 0.718
[HOlhair® mg/kg 1.22 0.674
[Hdlgi00a” mg/kg —5.06 0.731
I:Blood:Hairb —_— —-5.67 0.542
FIntake:BIood kg/day 0720 118
[MeHg]gign" mg/kg -1.57 0.867

& Parameters for model input variables obtained through maxi-
mum likelihood estimation using data obtained from Sherlock et al.
(1982).

P Global F ratios derived using data from Sherlock et al. (1982) and
WHO (1990) as described in text.

¢ Fish MeHg concentration estimated from Fishppjicate @nd Expo-
sure, reported by Sherlock et al. (1982).

any other exposure estimate can be estimated through
comparison against this standard. As a basis for esti-
mating absolute bias and random error, we use mea-
sured fish consumption and fish Hg content obtained
from the duplicate diet [Eq. (4)] as the reference
against which the other exposure estimates are com-
pared [Egs. (5)—(7)]. Results from these comparisons of
exposure are presented in Table 3. Because a multipli-
cative error model is used along with lognormal ran-
dom variables, the means and variances of the natural
logarithm of measured exposure (u,, x and o, x) are
compared instead of the actual means and variances.
Resulting estimates of the difference in log-trans-
formed error parameters are backtransformed, yield-
ing a ratio of means and a ratio of variances. Aug and
AcZ are used to denote the differences between calcu-
lated ratios and 1 and indicate the percentage change
in mean and variance due to measurement error.

RESULTS

The parameter distributions used in propagating er-
rors in Eqs. (4)—(7) are presented in Table 2. Calculated
log mean and log standard deviations for each of the
exposure models are presented in Table 3 along with
backtransformed values (i.e., geometric mean and geo-
metric standard deviation).

Because the original Sherlock et al. data are no
longer available but were graphed as individual data
points in one published study, we estimated their co-
ordinates using imaging software, and lognormal dis-
tributions were then fit to the estimated data. Histo-
grams, P-P plots, and Q-Q plots were generated in
order to visually check the fit of lognormal distribu-
tions to data for each parameter. In each case, the
assumption of lognormality provided a reasonable fit to
the data.
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In this analysis, we assume that the duplicate diet
model is the “gold standard” against which exposure
estimates derived from biomarkers of mercury expo-
sure (i.e., hair and blood Hg concentrations) and self-
reported, diary-based exposure estimates are com-
pared. Specifically, duplicate diet-based exposure
estimates are assumed to be unbiased, allowing the
estimation of the bias term for the remaining three
exposure models. Additionally, the random error term
associated with the duplicate diet model is assumed to
be zero. Table 3 provides results of the four exposure
models [Egs. (4)—(7)] applied to data obtained from
Sherlock et al. (1982). Relative bias and random error
for each exposure model compared to the duplicate diet
model are reported in Table 3 along with summary
parameters for the resulting exposure distributions.

We find that the diary model is biased very slightly
higher than the duplicate diet model, yet results in
slightly lower measurement error than found with the
duplicate diet model (Table 3). Of more interest are the
comparisons between the biomarker-based exposure
models and the dietary exposure models. Our analysis
shows the hair model to be slightly positively biased
when compared to the duplicate diet model (Apg =
51%), but with a fairly large increase in random error
(Ao = 95%) when compared to the diary model. The
blood model in this case is even more positively biased
when used to predict dietary exposure (Aug = 179%)
and also contributes a large increase in random error
(AcZ = 95%) when compared to the diary model. Each
biomarker model appears to add about the same
amount of imprecision to the exposure estimate, but
the blood biomarker model used here contributes
greater bias than the hair biomarker model.

TABLE 3
MeHg Exposure (mg/Day) Estimates: Comparison of
an Exposure Model and Two Biomarkers of Exposure
Using Analytical Error Propagation

Dup diet
model Diary model  Blood model  Hair model
Min x —4.76 —4.45 —3.73 —4.34
0% x 1.27 1.24 1.94 1.94
Mediany 0.0086 0.0116 0.0240 0.0130
GSDy 3.08 3.04 4.33 4.02
Apg 0%* 35%* 179%* 51%2
Ao 0%P —3.1%" 95%P 95%P

2 Bias estimates are increases in estimated mean exposure rela-
tive to the duplicate diet model, which is assumed to be unbiased.

P Random error estimates are increases in estimated variance of
exposure relative to the duplicate diet model, which is assumed to
have perfect precision (i.e., no variance due to error). Note that the
total calculated variance, however, is lower for the diary model than
the duplicate diet model.
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DISCUSSION

In this article, we apply quantitative uncertainty
analysis to evaluate differences in dietary MeHg expo-
sure estimates based on dietary self-reporting or bi-
omarkers of exposure. This analysis provides interest-
ing insights into the use of biomarkers of exposure and
predictive modeling to estimate exposure. For exam-
ple, Sherlock et al. (1982) reported estimates of report-
ing bias in the dietary recall of fish consumption. Com-
parison of mean reported intake (i.e., intake diaries)
against mean measured dietary intake (i.e., duplicate
diet) of populations from two areas demonstrated con-
sumption overreporting by approximately 45% (0.61
kg/week vs 0.42 kg/week, respectively) and 89% (0.51
kg/week vs 0.27 kglweek, respectively). These diary-
reported and duplicate diet measured intake estimates
can be compared against the overall intake distribu-
tions used in the modeling described herein to deter-
mine differences in reporting bias estimates of fish
intake. In our analyses, the mean diary-modeled fish
intake rate is 0.39 kg/week, whereas the mean dupli-
cate diet-modeled fish intake rate is only 0.29 kg/week
(modeled diary overreporting by approximately 35%).
These results suggest that the modeled fish intake
reporting bias estimate (35%) is comparable, albeit
smaller than, the actual reporting bias (45—-89%). Com-
parison of actual and modeled mean fish intake rates
also demonstrates that the modeled mean fish intake
rates (0.29 kg/week) are at the low end of measured
mean intake rates (0.27-0.42 kg/week). Because the
mean is heavily influenced by the degree of variation in
a lognormal distribution, these discrepancies suggest
that the modeled fish intake distribution underesti-
mates the true variance.

While individual data were available on both esti-
mated fish intake (Fishppicate) @nd estimated Hg in-
take (Exposure,) in the Sherlock et al. study, there was
no means of associating individual fish intake esti-
mates with their corresponding Hg intake estimates.
Thus, in developing the fish tissue Hg concentration
distribution ([MeHg]g;s,) Necessary for estimating Hg
intake with the diary model (Exposure,), we assumed
that fish intake rates (Fishpjapy, FiShpypiicate) @nd fish
Hg concentration ([MeHg]g;s,) Were independent, un-
correlated distributions. If such a correlation exists
and it was positive, it would increase variability in
both the fish Hg concentration and the exposure esti-
mates predicted by the diary model (Exposure,) rela-
tive to those reported in our analyses; a negative cor-
relation would do the opposite.

Assuming that all error contributing to variance in
the exposure measure is random and that the duplicate
diet model had no measurement error (Sherlock et al.,
1982), we find that the diary model is the least biased
relative to both the hair and blood exposure biomark-
ers (Aug, Table 3). However, the validity of assuming
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that the duplicate diet estimate of exposure is the most
accurate model of exposure depends on the measure
and period of exposure being considered. For example,
Sherlock et al. (1982) reported collection of new hair
(2.4 cm) and blood samples at the end of the month-
long exposure evaluation period for analysis of hair or
blood Hg, respectively. Because the half-life of mercury
in blood is roughly 50 days (Stern, 1997), and 2.4 cm of
hair growth represents growth that occurs during
slightly more than 2 months, both of these biomarkers
would be influenced by exposures that occurred outside
of the month-long study period; such confounding does
not exist for either the diary-based or the duplicate
diet-based exposure estimates. Moreover, because Hg
that is incorporated into hair is in equilibrium with
blood Hg at the time of hair growth, hair Hg is influ-
enced by the half-life of mercury in blood. In this sense,
both hair and blood Hg analyses are pooled estimates
of exposure that are influenced by that day’s exposure
and, to a diminishing degree, by exposures that took
place previously (WHO, 1990). Thus, our assumption
(also the assumption of Sherlock et al.) that the periods
of exposure are comparable among models and that
intake is at steady state will introduce differential
sampling error because a single biomarker measure-
ment will represent a weighted average of several
months of daily exposure.

With sufficient data the relative error contributed by
the differences in exposure period in each biomarker-
based model could be estimated by treating the biomar-
ker as a pooled sample. Our results suggest that if the
research question is focused on estimating individual
exposure over 1 month, one should be cautious of using
hair or blood, which will be influenced by previous
exposures. However, if one is interested in determining
long-term exposure trends or obtaining retrospective
exposure histories, then use of hair, and perhaps blood,
is likely to be a better base for estimating exposure
relative to dietary histories, which may be affected to
varying degrees by bias, individual recall error, and
other errors (Thomas et al., 1993; Bingham, 1991).
When the assumption of steady-state exposure does
not apply, toxicokinetic models may be used to predict
tissue Hg concentrations (Suzuki et al., 1993) rather
than linear proportionality constants (e.9., Fgjood:Hair
and F | take-Bl0og Fatios); in such cases, the use of sophis-
ticated modeling approaches to establish appropriate
sampling protocols is likely to be required, and the
most accurate medium for estimating exposure will
change depending on the question being asked.

Given that both Fishppjicate @and Fishp,,,, are inde-
pendent of [MeHg]g;s,, the differences between Expo-
sure, and Exposure, can be attributed solely to differ-
ences in measured and reported fish intake
(Fishpypiicate @nd Fishp;,,, respectively Table 2). A
comparison of the variance estimated by Exposure,
with Exposure, suggests that the diary-based exposure



102

model underestimates exposure variance relative to
the duplicate diary model (AoZ = —3.1%; Table 3).
This result may derive from intake underreporting
among individuals with high levels of intake, intake
overreporting among individuals with low levels of in-
take, or both. The phenomenon of systematic bias and
differential over- or underreporting of intake as a func-
tion of intake level has been found to be especially
troublesome when using diary-based or self-reported
intake measures with populations that include certain
subpopulations such as young women, athletes, or
obese individuals (Bingham, 1991; Klesges et al.,
1995). While duplicate diet analyses have been pro-
posed by the World Health Organization, U.S. EPA,
and other agencies as the recommended method for
obtaining dietary intake information, these may also
suffer from both random and nonrandom errors de-
pending on study design, length, study population,
level of education, training in estimating or measuring
portion sizes/weights, and other factors (Thomas et al.,
1997). Unfortunately, Sherlock et al. (1982) did not
discuss the design of the duplicate diet study or factors
that could influence the interpretation of the duplicate
diet results.

In such cases where the assumption of uncorrelated
true exposure (%) and measurement error (o2) has
been violated, one cannot assume that the exposure
model with the lowest error (Ao2) is the most precise.
Because the self-reported fish intake variance is
smaller than the actual variability (as estimated by the
duplicate diet; Table 3), the use of self-reported fish
consumption to estimate dietary Hg exposure would
underestimate population variability in exposure. The
extent of this underestimation would depend on the
nature of the diary-based intake reporting bias.

0.01

Predicted Exposure (mg/d)

0.001+

T=

0.0001 1 } 4
Duplicate Diet Dairy Bloed

Exposure Model

Hair

FIG. 2. Population variability in MeHg exposure estimates (mg/
day) as determined by dietary exposure models (diary-based and
duplicate diet) and biomarkers (hair Hg analysis and blood Hg anal-
ysis). 2.5, 25, mean, 75, and 97.5 percentile exposure estimates are
shown.
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FIG. 3. Population variability of steady-state ratio of blood mer-
cury concentration to hair mercury concentration from Sherlock and
“global” estimates. 2.5, 25, mean, 75, and 97.5 percentile estimates
are shown. Sherlock distribution reflects lognormal fit to observed
individual values. Global distribution reflects lognormal fit to WHO
reported mean values, increased by the variance observed for indi-
viduals observed in Sherlock study.

Even at this simplest level of consideration, however,
little quantitative information about the relationship
between the biomarker concentration (i.e., concentra-
tion of mercury in either hair or blood) and the mercury
exposure rate is available in the general literature.
Regulatory and scientific documents typically report
the maximum likelihood estimate (MLE) of a linear
regression for this variable, but fail to report regres-
sion confidence limits or other indicators of variability
in the observed data; these MLE point estimates are
typically used in regulatory processes to set acceptable
exposure limits. To estimate the variance used to
model each “global” F ratio (Figs. 2 and 3), we added
the variance among MLE regression slopes reported by
WHO (1990), which were weighted by sample size, and
the variance among individuals within the Sherlock et
al. study. Because individual data are not provided in
the WHO document to estimate individual variability
within studies, we assumed that the variability in each
study cited by WHO is comparable to that of the Sher-
lock et al. study. Certainly other reasonable ap-
proaches could be taken in estimating these parame-
ters, which would affect the outcome of this analysis.
For example, Carrington et al. (1997) fit a series of
models, weighted by goodness-of-fit, to the reported
Sherlock et al. study individual F | iake-g100q VAIUES and
used the resulting model variability in combination
with the individual heterogeneity to estimate the over-
all uncertainty regarding the F,,iake-Bl00g Fatio. Car-
rington et al. chose not to include data from other
studies in their estimate of F,,ake-B100g dUE to the low
correlation between dietary intake and blood mercury
in those studies.

A similar approach, focusing on the Sherlock et al.
data alone, was initially considered for developing the
F ratios for this study (Figs. 2 and 3). This approach is
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FIG. 4. Population variability of steady-state ratio (kg/day) of
dietary mercury intake rate to blood mercury concentration from
Sherlock and “global” estimates. 2.5, 25, mean, 75, and 97.5 percen-
tile estimates are shown. Sherlock distribution reflects lognormal fit
to observed individual values. Global distribution reflects lognormal
fit to WHO reported mean values, increased by the variance observed
for individuals observed in Sherlock study.

flawed in that it requires the use of the exposure data
to determine the site-specific F ratios, which are then
used to estimate exposure; using ratios developed in
this way, we would derive the same exposure estimates
for the dietary model and the biomarker model (i.e., it
is not informative to use the same data to both develop
and test a model). Because the purpose of using a
biomarker of exposure is to replace or supplement an
exposure estimate, this approach would not inform the
exposure modeling process in any manner. Moreover,
an exposure biomarker only has utility if its relation-
ship to exposure estimation is in some way generaliz-
able. Estimation of “global” F-ratio distributions (Figs.
2 and 3) is an initial attempt at generalizing this rela-
tionship and accounting for the uncertainty regarding
the application of these ratios across populations. We
recognize, however, that if there are regional or popu-
lation differences that contribute to the reported vari-
ation in F ratios (i.e., blood:hair ratio or intake:blood
ratio), then the use of local/regional F ratios would
likely provide the most accurate estimates of exposure.

It is clear that the choice of F ratios strongly affects
the dietary mercury exposure estimates. Moreover, in
deriving and comparing global F ratios for the blood:
hair partition coefficient (Fig. 3) and the intake:blood
ratio (Fig. 4), we noted that there are large, potentially
significant differences in the F ratios derived across
populations (e.g., see WHO, 1990). Slight changes in
those parameters can produce very different predic-
tions of exposure, sometimes even altering the conclu-
sion regarding which model produces the most precise
exposure estimates.

The sensitivity of model output to slight changes in
F-ratio values highlights the importance of both the
assumed nature of the relationship between biomark-
ers and exposure when making exposure inferences
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based on biomarker data and the importance of re-
search that contributes to our understanding of the
nature and reasons for variability across different pop-
ulations. For example, Hg uptake into hair may vary
among individuals depending on regional or genetic
differences (Suzuki et al., 1993). In addition, use of
total hair Hg as a surrogate for MeHg intake may be
confounded by exogenous inorganic Hg contamination
or by incorporation of inorganic Hg into growing hair
(Suzuki et al., 1992, 1993); use of hair MeHg rather
than total Hg has been shown to have the highest
correlation with intake (Suzuki et al., 1993). If re-
gional, genetic, or physiological differences contribute
to underlying variability in mercury speciation or in-
terorgan partitioning in humans, separate F ratios
may need to be developed to reflect such differences. A
better understanding of the sources and magnitude of
parameter variability will both inform us of and im-
prove the predictive capabilities of biomarker-based
models.

Other key assumptions that may have influenced the
outcome of this analysis include the assumption of
lognormality, which tends to accentuate the differ-
ences in variance across models. While the data appear
to fit lognormal distributions fairly well, there is no
recognized method for determining a unique probabil-
ity distribution shape to represent any dataset. Addi-
tionally, assumed distributional shapes may be highly
sensitive to some outlying points, thereby allowing a
few unusual observations to drive the analysis. An-
other potential source of error was the estimation of
data using software-assisted visual estimation from
published graphs in the Sherlock et al. article. Some
clusters of points were difficult to distinguish from
each other and therefore may have been inaccurately
estimated. While this only appeared to be a problem in
a few cases out of dozens, it could have had a moderate
impact on the variance estimates.

The analyses provided here highlight the need for
data collection methods that retain individual informa-
tion that allows evaluation of heterogeneity and corre-
lations among variables. The data that formed the
basis of this study are no longer available in their
original form (Sherlock, 1997), so individual points had
to be interpreted from published graphs. Data for some
variables of interest such as fish Hg concentrations
were not graphed and had to be estimated from the
available data. These estimation procedures may have
introduced additional error and lost potential correla-
tions among individuals between their fish intake pref-
erences (i.e., rate of consumption, fish Hg content) and
Hg intake estimates; such issues could have been
avoided if raw data had been available. Storage of data
in public repositories could eliminate the need for this
sort of estimation and allow researchers to view and
interpret existing data for themselves.
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CONCLUSIONS

We demonstrate the use of quantitative uncertainty
analysis to evaluate the accuracy of biomarker-based
exposure estimates relative to predictive models based
on self-reported intake and mercury concentrations in
fish. While this analysis focuses on population variabil-
ity and measurement error, additional sources of un-
certainty such as temporal sampling error and model
error may also contribute to reducible uncertainty. Un-
certainty analysis can be used to identify and quantify
sources of error in risk assessment, which impacts
risk-based decisionmaking regarding environmental
health. Error characterization can also improve data
collection and analysis decisions made in the risk as-
sessment process, such as whether or not to use expo-
sure biomarkers to measure exposure and how to in-
terpret biomarker measurements. Uncertainty
analysis can also be used to target critical areas for
future research in order to maximize the potential
uncertainty reduction of risk assessment research pro-
grams.

This approach, which relies on an assumed distribu-
tional shape (i.e., lognormal) for all model variables,
allows for a straightforward estimation of uncertainty
magnitude and potential sources of error in resultant
exposure estimates. In cases where more information
is available regarding distributional form, two-dimen-
sional uncertainty analysis, which requires more spe-
cific information, may be employed. Two-dimensional
(also called two-stage or second-order) uncertainty
analysis has been proposed as a means for separately
evaluating population variability and reducible uncer-
tainty and their contribution to total uncertainty
(IAEA, 1989).

If exposure biomarkers are to be successfully ap-
plied, their quantitative relationship to exposure needs
to be clearly understood. For example, is the relation-
ship between blood mercury concentrations and mer-
cury ingestion rates well represented by a linear model
or should more sophisticated toxicokinetic models be
applied? Do significant population or regional differ-
ences in mercury kinetics exist or can global models be
applied to the estimation of exposure from mercury
biomarkers? Evaluation of these questions requires
thorough quantitation of the population variability and
reducible uncertainties regarding biomarker-based ex-
posure estimation.

The analyses provided here demonstrate high de-
mand for information required to establish well-char-
acterized biomarkers of exposure. Of particular inter-
est in this regard is the need for dietary intake tools
that minimize bias and error and which can serve as
independent measures against which to compare expo-
sure estimates derived from predictive models and bi-
omarkers; such a tool, the duplicate diet, was available
in the study presented here. Such tools, which can
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serve to provide relevant bases for comparison of expo-
sure estimates derived from both predictive models
and biomarkers of exposure, are fundamental to the
validation of any exposure-estimating instrument and
are the best means for obtaining estimates of relative
bias and uncertainty in exposure predictions. While it
is possible to examine the relative bias and uncertainty
in exposure estimates and predictive models without
an independent measure of exposure, such analyses
are limited. Indeed, it may be argued that without
performing a comparison against such an independent
measure of exposure, exposure estimates based on pre-
dictive models or biomarkers remain unvalidated.
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